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Past attempts to develop brain-based 
biomarkers of chronic pain have shown 
promise using machine learning (73-91% 
accuracy)1 However, many biomarker studies 
are hindered by small datasets (n=~100), 
limiting the validation and generalization of the 
markers2. Here, we aim to train a brain-
based biomarker in a large cohort 
(UKBiobank: n = 37,781) able to distinguish 
pain-free controls from individuals 
reporting various chronic pain phenotypes.
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Methods
Data:
• A total of 37,781 individuals (Healthy 

Controls=24,341, Chronic Pain=13,440, 
54% F) were obtained from the UKBB

Magnetic Resonance imaging:
• White matter tract diffusivity, structural T1 

imaging, and rsfMRI data were 
concatenated across all subjects (Fig. 1a) 
to derive a feature space of multi-modal 
brain metrics for machine learning.

• Two features variants were used in the 
analysis: 1) raw (confound-unadjusted) 
features 2) features with confounds (age, 
sex, and head motion) regressed out.

• Machine learning models were trained on 
the resulting features to distinguish subjects 
reporting various chronic pain phenotypes 
(Fig. 1b) from pain-free.

Machine Learning Pipeline:
• The dataset was divided into a train set 

(70%) and a validation set (30%) and 
nested cross validation implemented to 
tune, train, and validate a logistic regression 
model. Results are reported using ROC-
AUC score.

• Normalized odds—ratios were computed 
across 5 psychosocial health dimensions 
and each chronic pain phenotype.

Statistical Analyses:
• Partial correlations controlling for age, sex, 

and head motion were computed between 
cortical thickness subcortical volume, and 
resting state functional connectivity and 
number of chronic pain sites.

• Results are reported using brain maps 
corrected for false discovery rate 
(Benjamini-Hochberg method) 

1) Multivariate pattern 
classification applied to multi-
modal brain data reveal that 
chronic pain is most 
neurologically predictable 
where it is most 
psychosocially burdensome, 
at the cost of increased 
confounding.

2) Robust brain-wide statistical 
differences exist in chronic pain 
at a population level. We 
observed increased cortical 
thickness in the parietal lobules, 
increased subcortical volume in 
the putamen and caudate, and 
reduced connectivity in the brain 
stem and cerebellum associated 
with increased spreading of 
chronic pain.

3) Future studies should consider 
the cognitive, affective, and 
physical elements associated 
with a pain state in order to 
progress toward development of 
an objective neuroimaging 
biomarker of chronic pain.Raw Data
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Figure 2. Machine Learning Analysis
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Fig. 1 (top). Brain features and pain phenotypes used in analysis. A. Measures
derived from multi-modal brain imaging used in analyses. B. Pain phenotypes used as
target variables for machine learning analysis including site of pain, number of pain
sites, and pain diagnosis.
Fig. 2 (right). Validation performances (ROC-AUC) from discriminating subjects
reporting various pain phenotypes from pain-free controls based on multi-modal
brain data and odds-ratios between psychosocial health variables and pain
phenotypes. A. Discrimination performance improves as models are trained on
subjects with increasing numbers of pain sites. B. Performance associated with subjects
reporting non-musculoskeletal pain types (i.e., pain of the face, head, or stomach/abd.).
C. Performance associated with subjects reporting non-musculoskeletal pain diagnoses
(i.e., migraine). D. Discrimination performance associated with the odds of expressing a
worsened psychosocial health impact across all pain categories.
Fig. 3 (bottom). Partial correlation statistics between structural and functional
brain imaging metrics and number of chronic pain sites, controlling for age, sex,
and head motion. A. Association with cortical thickness and subcortical volume. B.
Top 5% significant correlations of resting state functional connectivity edges.
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Figure 3. Univariate Analyses
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