Comparison of various functional connectivity estimation methods in developing different machine learning techniques to predict chronic pain

McGill Ronrick Da-ano¹, Matt Fillingim², Azin Care¹, Jax Norman¹, Mathieu Roy³, Luda Diatchenko¹, Etienne Vachon-Presseau¹ ¹Faculty of Dental Medicine and Oral Health Sciences, McGill University, ²Integrated Program in Neuroscience, McGill University, ³Department of Psychology, McGill University

Introduction

Most of the functional magnetic resonance imaging (fMRI) investigations conducted to date have used the assumption that there is consistent functional connectivity (FC) between time series from different brain areas. There has been increasing interest in quantifying potential dynamic changes in FC during fMRI investigations as it is believed that doing so may shed light on the basic operation of brain networks. However, a growing body of research in neuroimaging suggests that functional networks show dynamic changes in connection strength as well as variable phase difference (nonzero time-lag) between regions.

Aims / Hypothesis

Our goal is to compare various functional connectivity estimation techniques that address these problems and demonstrate their effect in developing and evaluating machine learning (ML) in predicting chronic pain.

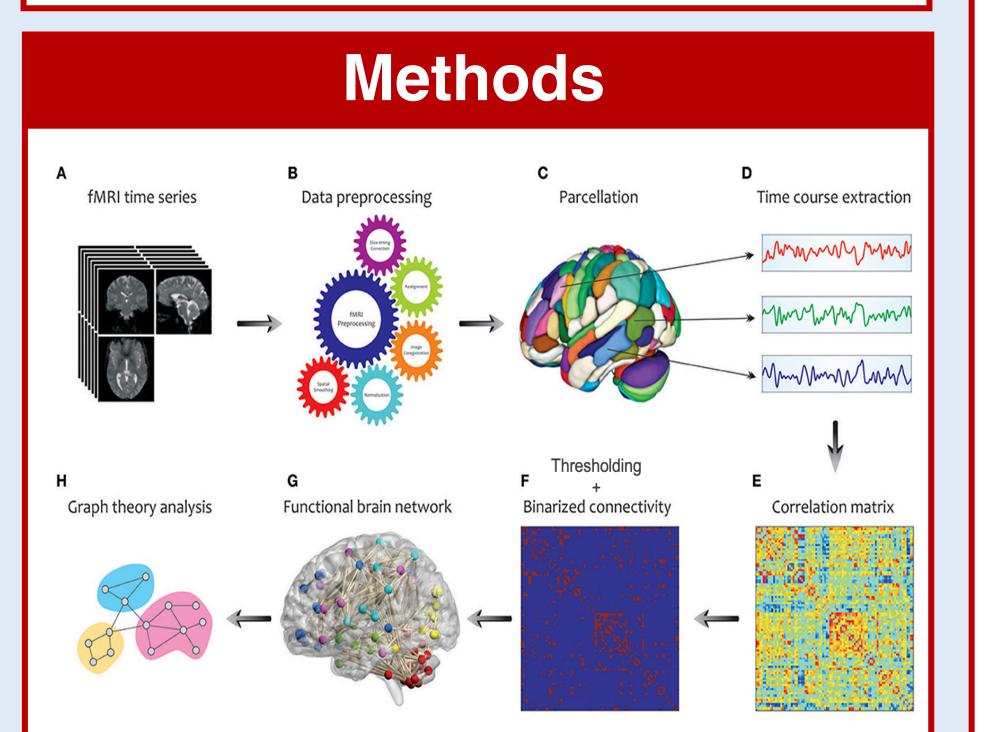
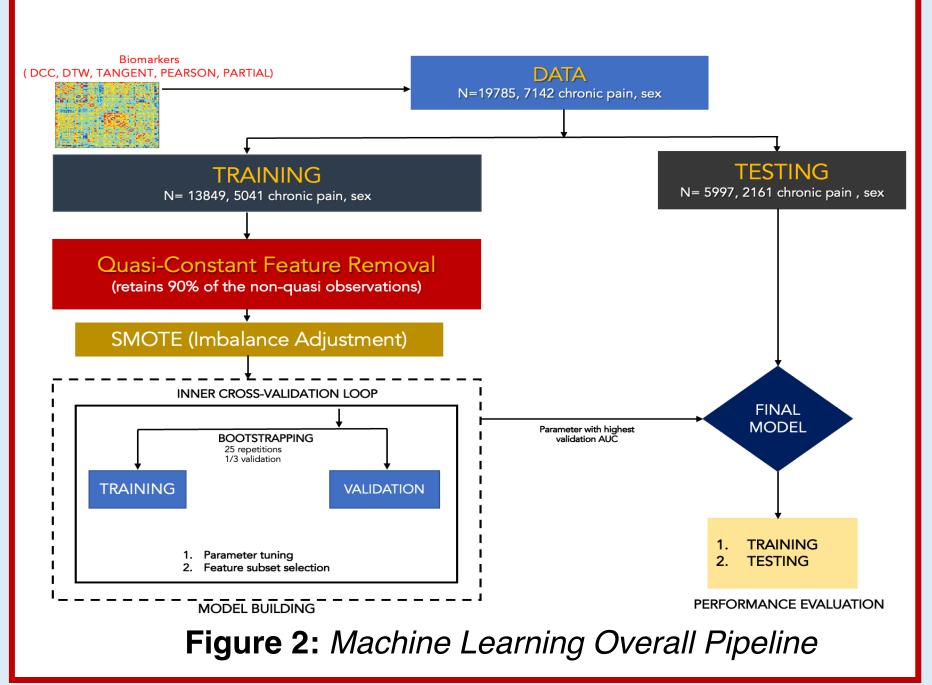
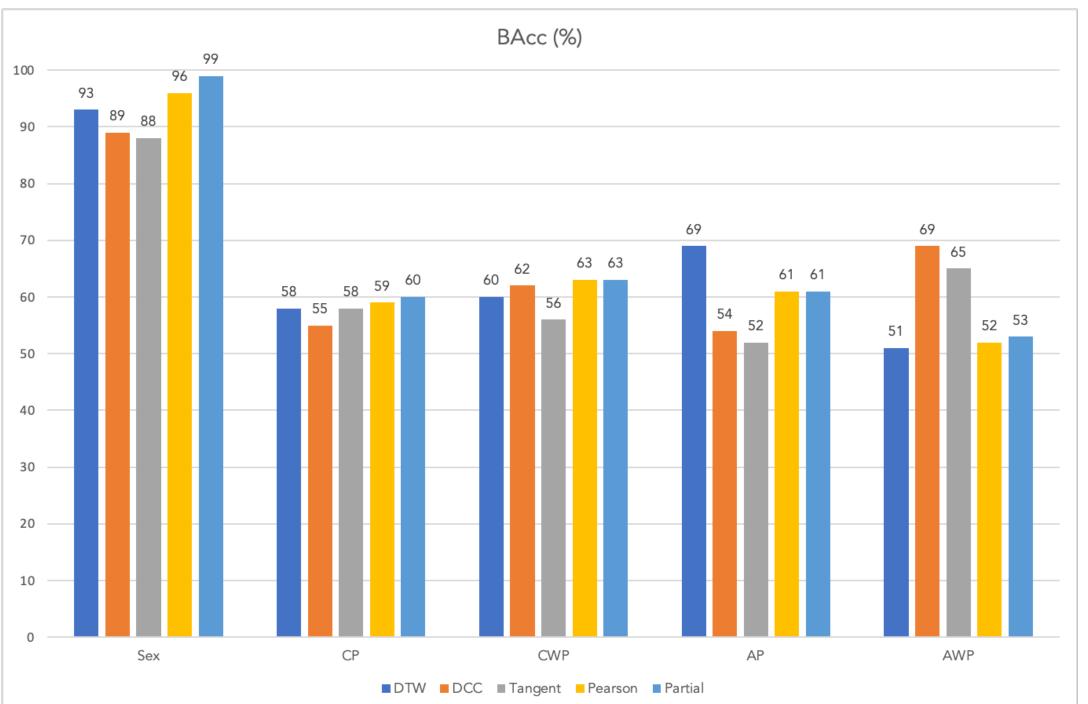


Figure 1: Data Preprocessing Overall Workflow





FCM	AUC (%)				
	Sex	CP	CWP	AP	AWP
DTW	85	53	55	51	45
DCC	81	52	57	49	69
Tangent	80	53	51	49	63
Pearson	88	54	58	49	49
Partial	93	55	58	49	49
Significance level	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001

Results

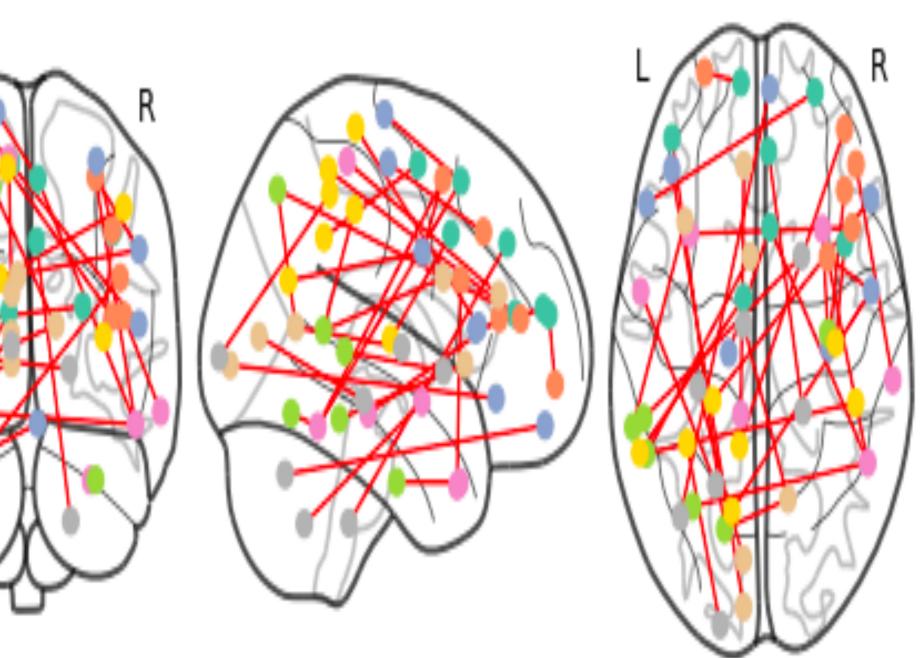


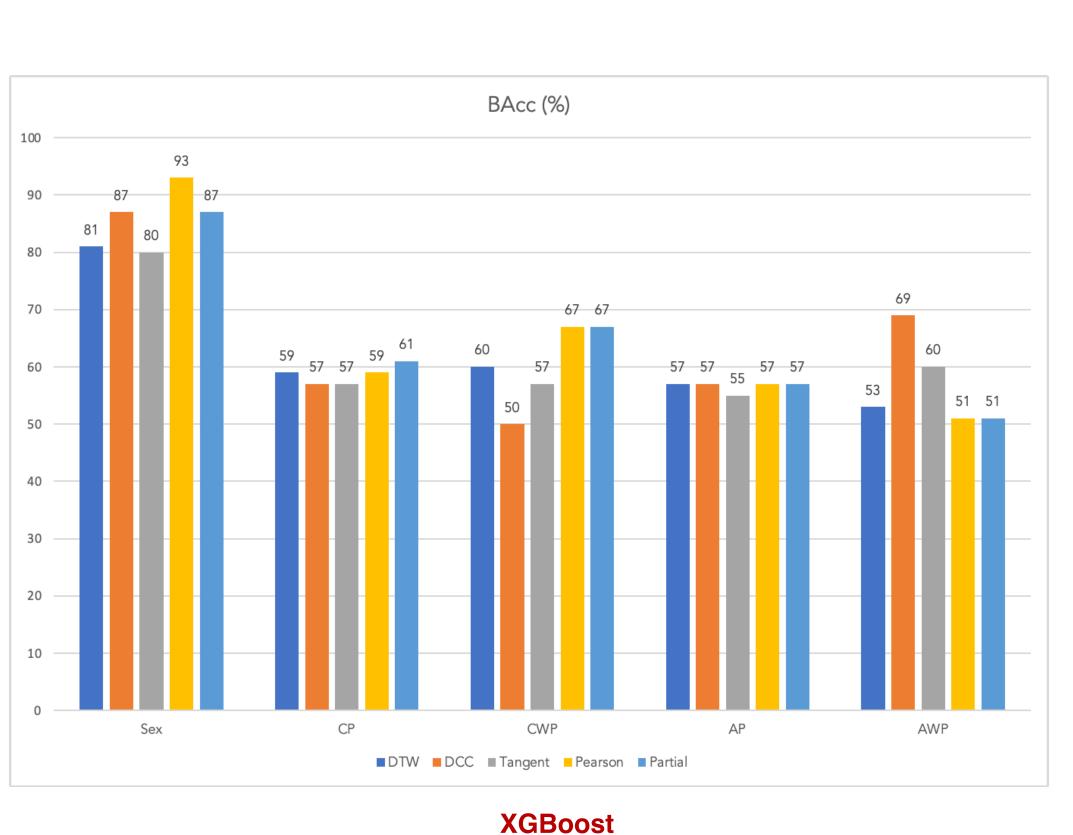
Figure 3: Visualization of the absolute connectivity from the top 30 Important Features in LR using Partial Correlation. computed from resting-state functional Magnetic Resonance Imaging (rsfMRI).

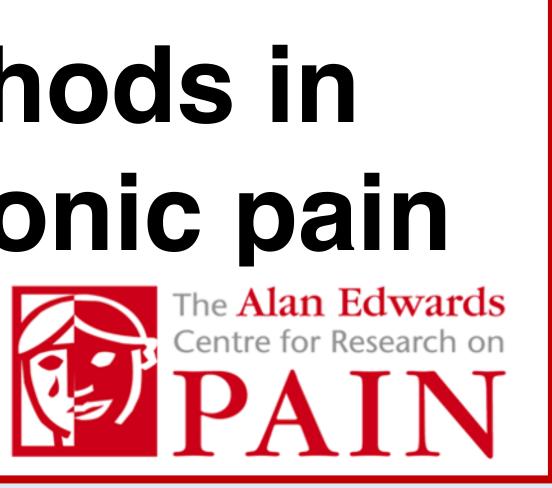
Logistic Regression

Figures 5 and 6: Performance metrics evaluation of predictive models in testing sets using the LR and XGB models.

Logistic Regression

Tables 1 and 2: Performance metrics evaluation of predictive models in testing sets using the LR and XGB models.





4211_Fr_MFG-R (6vI)_x_Tem_ITG-L (20r) -9878_Fr_SFG-L (6m)_x_Pr_IPL-R (40c) 15995_Fr_PCL-L (1/2/3II)_x_Lim_CG-R (32p) 11378_Fr_PrG-R (4hf)_x_Pr_PCun-R (dmPOS) 18578_Fr_OrG-L (12/47I)_x_Occ_MVOcC-R (cCunG) 37139_Fr_SFG-R (9m)_x_SbC_HypoTha 9852_Tem_pSTS-L (cpSTS)_x_Pr_IPL-L (40c) 12913_Fr_IFG-R (45c)_x_Pr_PoG-R (1/2/3t) 25545_Tem_pSTS-L (rpSTS)_x_SbC_BG-L (dCa) 34269_Tem_STG-L (22r)_x_Cb_Cb-V (VIIIa) 5433_Tem_STG-R (38I)_x_Tem_FuG-L (37mv) 19629_Pr_SPL-L (7c)_x_Occ_LOcC-L (mOccG) 2955_Fr_IFG-R (44d)_x_Tem_STG-R (38l) 26762_Occ_MVOcC-R (vmPOS)_x_SbC_Tha-R (mPFtha) 1456_Fr_MFG-R (6vl)_x_Fr_PrG-L (6cdl) 547_Fr_MFG-R (46)_x_Fr_IFG-R (45c) 8021_Fr_MFG-L (9/46v)_x_Pr_SPL-R (7c) 4187_Fr_SFG-R (8m)_x_Tem_ITG-L (20r) 31925_Fr_OrG-R (11m)_x_Cb_Cb-L (Crus_I) 363 Fr SFG-L (10m) x Fr MFG-R (10l) 15698_Tem_pSTS-L (cpSTS)_x_Lim_CG-R (24rv) 1734_Fr_MFG-R (8vI)_x_Fr_PrG-R (4t) .3959_Tem_ITG-L (20cl)_x_Ins_INS-R (dIa 1712_Fr_SFG-R (8m)_x_Fr_PrG-R (4t) 23626_Occ_MVOcC-L (rCunG)_x_SbC_Hipp-R (cHipp) 13383_Fr_MFG-R (IFJ)_x_Ins_INS-L (vIa) 3352_Fr_IFG-R (IFS)_x_Tem_MTG-L (21r) 20631 Pr SPL-L (5I) x Occ LOcC-R (OPC) 5551_Tem_ITG-R (37elv)_x_Tem_FuG-R (37mv) 11047_Fr_MFG-R (9/46v)_x_Pr_PCun-R (5m)

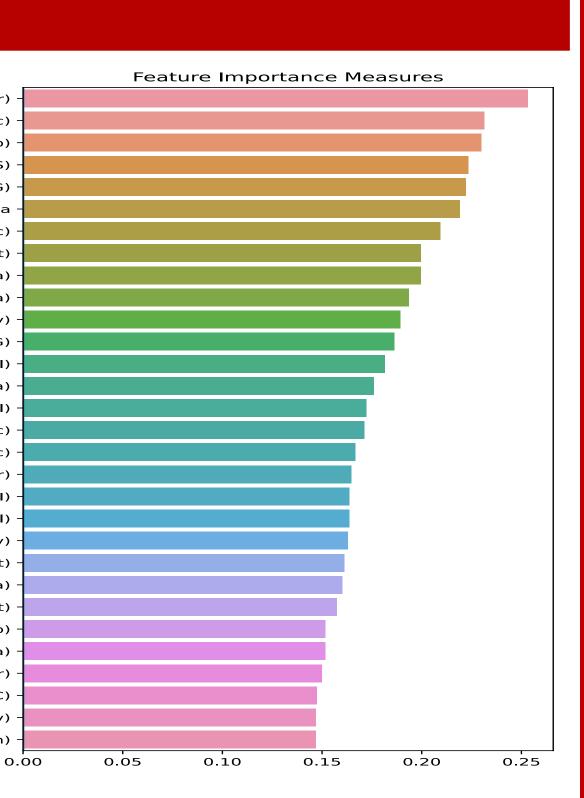


Figure 4: Top 30 Important Features in LR using Partial Correlation.

XGBoost

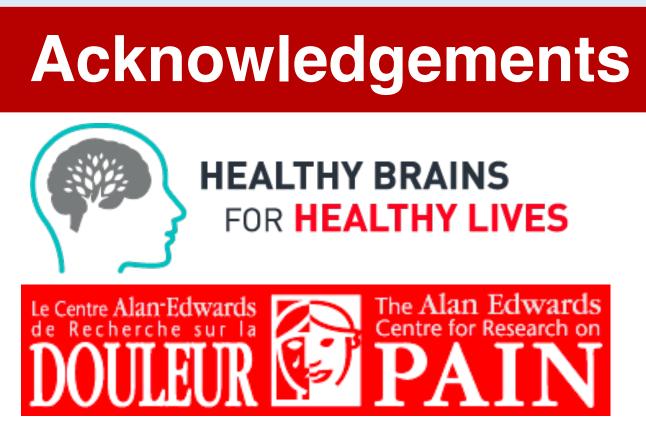
- In discriminating Pearson correla consistent perform in 6 ML algorithm 0.87, 0.2 0.65 J.88, respectively).
- correlation provided a 0.53, 0.51, respectively).
- The However, the based biomarker models.

References

Vachon-Presseau, et al. (2016). The emotional brain as a predictor and amplifier of chronic pain. Journal of Dental Research.

McConnell, et al. (2020). Impaired frontostriatal functional connectivity among using pain patients is chronic opioid with dysregulated associated affect. Addiction Biology

Wu, et al. (2019). Genome-wide association study of medication-use and associated disease in the UK Biobank. Nature Communications.



Discussion

	Partia	
	n vid	
mance	when	using
AUC	C: 0.88,	0.85,
7, 0.8	7 and	0.93,
).85,	0.80,	0.74

On the other hand, in predicting chronic pain, DCC and Pearson relatively better performance when using in 6 ML algorithm (AUC: 0.53, 0.53, 0.54, 0.54, 0.54, 0.52 and 0.55, 0.53, 0.55, 0.53

functional various connectivity estimation techniques affect the performance on whatever ML algorithms are performed in predicting either chronic pain or sex. 6 different ML pipelines were consistent in the performance of predictive brain-